```
AUTHOR Luaw, Alexander I.
TITLE
INSTITUTION
GUB DATE
NOTE
AVAIEABLE FROM
PUB TYMPE
EDRS PRICE
DESCRI PTORS
IDENTIFIERS
Law, Alexander 1.
Time and Learning in California Schools. California State Dept. of Education, Sacramento. 84
\(54 \overline{\mathrm{p}}\).
Pubícátions Sales, California State Dept. of Education, PO Box 271, Sacrament, CA 95802 (\$1.50 pius sales tax for California residents). Reports - Research/Technical (143)
MFOi Pius postage: PC Nōt Available from Eñs. *Academic Achíevement; Achievement Tests; College Entrance Examinations; Elementary Secondary Education; Graduátion Requirements; 夫school Schedules; state programs; Testing programs; Time Factors (Learning); *Time ōn Task *California Assessment Program; Càifōrnia Basic Educational Data System; High Schōil and Beyond (NCES): Scholastic Aptitude Test
```


ABSTRACT

This report discusses the avãilability and use of instructional time in relation to the requirements contained in the Hughes Hart Educational Reform and Financé Act of 1983. The study draws on information from the California Assessment program, which suppíies achievement test scores, time and coursetaking information; verbá and mathematićs apticude scores of the Scholastic Aptitude Test; Caidíornia résults of the high school and Beyond study; and the California Basic educationai Data system. The amonnt of time California students spend in schools which is currentig less than the national average, is examined, The report discusses the distribution of time among subject areas in étementary schooi, and coursetaking and achievement in high schōl. Nationai and state recommendations for improving student achievement are discussed. Méthods for increāsing students' academic achievement are preseñed. The repport is a comprehensive examination of the relationship between the amount of time California students spend in school in comparison with students of othèr statēs, and the implications of the differences fō learning and achievement. (DWH)

[^0]

Time and Learning in California Schools

Prepared Under the Direction of
Alexander I: Law, Director
Planning; Evaluation; and Research Division

Publisining Information

This report, which was prepared by the staff of the California Assessment Program in accordance with the provisions of Education Code Section 60660; was published by the California State Department of Education, 721 Capitol Mall, Sācramento. CA 95814, and was distributed under the provisions of the Library Distribution Act and Government Code Section 11096.

1984
Copies of this publication are àvailable for $\$ 1.50$, plus sales tax for California residents, from Publications Sales, California State
Department of Education, P.O. Box 271. Sacramento; CA 958 Cz.
A list of other publications. which are available from the
Department, Solected Publications of the California State
Department of Education, may be obtained by writing to the same ādrēss.

Contents

Page
Summary I
Background 5
Time Spent in School 8
Time and Learning in Elementary School 12
Time and Learning in High School 18
Graduation Requirements 38
Ways to Increase Student Achievement 43
Selected References 47

Summary

The study described and reported in this pubilcation was sponsored by the California Assessment Program (CAP) of the State Department of Education and conducted during the 1982-83 school year. It incorporates data from severai national and state sourcēs into à comprehensive look at the relationship between the amount of time that California's students spend in school in comparison with that of students in other statēs and the implications of the differences for learning and achievement. Thiss study was originaily pubilished as part of CAP's complete yearly report, student Achievement in Calif \bar{f} Schools: 1982-83 Annual Report (Sacramento: Cālfornia State Department of Education; 1984).

This report focusses on the availability and use of one of the most expensive and indispensable resources underiying that leariing-instructional time; especially in relation to the new requirements contained in the Hughes-Hart Educational Reform and finance Act of 1983. Long ignored ās a critical factor in the study of educational productivity; time is now receiving statewide and
 prēent state of student achievement. Increased time is viewed às àmeans=along with other resources and higher expectations--for raising student áchievement. Time ts̄ àlso viewed as the foundation of all learning and the uséfulness of all rēsourcēs and efforts aimed at improved achievement.

The Educātional Rēform Act carries fār-reaching implications. At the center of its réform package are requirements for increases in the amount of instructional time and the number of courses taken. The reasoning behind the reforms is that taking more courses and spending more time fearning will increase a student's level of achievement. The data gathered and the analyses performed during the 1983 CAP investigation (which inciudes and elaborates on portions of the 1982 time and learning study) into the relationship between amount and use of instructional time and achievement tend to support the tegisiature's reason-
 Reform Act does not go far enough.

The investigation reported in this publication includes information on:

1. The amount of time California students spend in school
2. How time is distributed among subject ārēas in elementary schoois
3. How coursetaking patterns and achievement of California high school students compare with those in other states and the nation as à whoie
4. The recomendat́ons of national organizations, the State Board, and the Legisiature and what must be done to meet them
5. Ways to increase student achievement

In addition, because national attention is now focussed on the critical gap between the preparation of American youth in mathematics and science and that of youth in other developed cenntries; the investigation emphasized the achievement and coursetaking paterns of California's studentes in thēse areas.

The study draws on information from a variety of sources. The chief source is the Caitfornia Assessment Program; which supplies both achievement test scores and time and coursetaking information: Other key sources are:

- The verbal añ mathematics aptitude scores of the College Entrance Examination Board's Schoiastic Ap titude Test
- The scores of college-bound students who take the Coilege Entrance Examination Board's advanced achievement tests
- The California and national results or the high Schooi and Beyoñ study of the 1980 and 1982 graduating člasses; carried out by the Nationai Center for Education Statistics of the U.S. Department of Edication
- The California Basic Educational Data System (CBEDS)
- A 1981 survey of school day and school year length nationwide carrié out by Tod Anton, Superintendent, Lincoln Unified school District, Stockton, California

In this report major and minor findings are developed, supported, and éaborated, and the supporting data are presented and discussed. It is impos= s̄ible to separate complètēly the findings of the study from their supporting dāta. In the body of the report they arē, of course, merged for detalled discusssion and analysiss. For the sake of providing a conyenient reference and an overview of the study's contents, five key areāe, which corrēpond to the five major parts of thiss report, ārē described below, ānd, where àppropriate, a summary of the most important supporting datā is included:

1. Amount of time California students spend in school. Californiā students spend considerably les̄s time in school thān theirir countērparts̄ In other statess. The नifferences are present àt āll g grade lēvels añ, viewed cumulatively, are substantial by the time the students graduātè from high school: Even if the rest of the nation does not change, when the Reform Act's requirement.j are fully implemented in 1986-87, the gap between the time spent in school by California's students and students elsewhere will still not be closed.

- Total instructional time in Californie is the equivalent of
- One-half year less than the national average by the end of grade three
- One and one-third years lers than the national average by the end of hígh schooi
- The 1986-87 standards for yeariy minutes of instruction; created by the Reform Act, if fuily adopted:
- Wouid requíre an average of 18 minutes more per day in kindergarten, 10-12 mínutes more in grades one through three, and an hour more in

- Would still fall short of the current national end-of-high-school average by one-fourth of a year

2. Distribution of time to subject areas in elementary school. CAP data on the distribution of instructional time among subject areas in grade six were compiled and compared with similar national data. The data and the comparison reveal that:

- In grade six, of the five hours of total instructional time per day:
- Half is spent on the basics: reading (61 minutes), writing/language (47 minutes), and mathematics (53 minutes).
- One-fifth is spent on science (25 minutes) and social studies (36 minutes):
- More time is spent on reading in schools serving low socioeconomic populations; this time is taken away from writing/language, science, and social studfes; but not from mathematics.

3. High school coursetaking and achievement: About three-fourths of āll students are enrolled in a mathematics course in the ninth or tēnth grade; about half are enrolled in science in the tenth grade. From these high points; science and mathematics enrollments drop to about 25 percent of twelfth graders in the fall semester and further to only 12 percent by the spring semester: Despite snme increases to these enroliments in the last two years; the average California senior still has taken fewer mathematics courses and substantially fewer science courses than the average high school senior nationwide. When California students are compared with students from New York; a state with a strong tradition of high standards for high schooi graduation and college entrance; the differences are profound. Far fewer California btudents take college-preparatory science and mathematićs courses or the College Entrance Examination Board's achlevement tests in those areas: Their achievement is considerably lower on those advanced tests:

- Nationatly comparable data suggest that California high school seniors:
- Differ little in basic reading and mathematics achievement from the national average
= In 1982 took College Entrance Examintion Board's science achíevement tests at half the national rate, but doubled that rate in 1983
- Comparative dātā for California vērs̄us New York rēēal that California high school seniorē:
- Have substantially lower achievement in basic reading and mathematics.
- Score approximately the sāame on thè vèrbā section and somewhat lower on the mathematics section of the Scholastic Aptitude Test, even though California's testrtaking population is more sēelective than New York's (approximately half ā māny Californiā s̄tudents às New York students tāke the tēst).
- Take college-preparatory mathematics and science courses at a lower rate and the more advanced courses (trigonometry, calculus; physics; and chemistry) at one-half the New York rate.
- Také the College Entrance Examination Board's advanced science achievement tests at one-fourth to one-half the New York rate.
- Who take advanced science tests are far more poorly prepared mathematically than New Yorkers on the basic of their average mathematics aptitude scores.
- Perform more poorly on the science tēsts than New York students with equal aptitude scores.

4. National-and-state recommendations: Relatively few current graduates-in California or elsewhere-could meet any of the requirements recommended by recent national reports--A Nation at Risk, High School: A Report on Secondary Education-in-America, and Educating Americans for the $218 t$ Century-especially when the recomendations are considered as a full set. Thë new course completion standards created by the Educational Reforim Act of 1983 are less demanding than those recommended in the national reports. California's new 1986-87 graduation standards created by the Educational Reform Act: (1) are currently not met in mathematics by 39 percent of California seniors and in science by 60 percent of California seniors; and (2) ārè lē̄̄s s̄tringent thān those promulgated by the New York Board of Regents and those advocated in major new national reports.
5. Ways to increase otudent achievement- This study suggests some ways to improve students academic achievement- The following methods are discussed:

- Increasing the amount of time available
- Increasing the proportion of aliocated time devoted to actual tnstruction
- Increasing the proporion of actual instructional time devoted to active learntng
- Reducing the time needed to learn

Background

The annual reports of the caífornía Assessment Program have presented information to educators and policymakers on a variety of factors associated with school success. This practice helps fuifial one aspect of the legislative intent of the testing program: "The program of statewide testing shall identify unusual success or failure and the factors which appear to be responsible, so that appropriate action may be taken at the distriet and state level to obtain the highest quality education for ali pubilc school pupils" (Education Code Section 60601). The focus of this year's report is on the coursecaking patterns and the amount and use of instructional time in Califorma schools in relation to the requirements of the Hughes-Hart Educational Reform Act of 1983. The law contains a set of incentives to increase the amount of instructional time and a set of course requirements for high school graduation:

- Ime: Based on the number of instructional minutes of fered in 1982-83, districts will receive a bonus to increase the number of instructional minutes one-third of the distance per year toward the following goals:
- 36,000 annual minutes in kindergarten
- 50,000 annual minutes in grades one through three
- 54,400 annual minutes in grades four through eight
- 64,800 annual minutes in grades nine through tweive

Districts must (1) begin increases in 1984-85 to be eligible for bonuses; and (2) maintain instructional minute increases beyond the three-year phase-in period (1984-85 through 1986-87) to retain the bonuses.

- Course requirementss: The law éstāblishes, effective in the 1986-87 sschool year, new requirements for receipt of a high school diploma, including the following:
- Three one-year courses in English
- Two one-year courses in mathematics
- Two one-year courses in science (including biology and physical sciences)
- Three one-year courses in social studies (including U.S. history and geography; world history, culture, and geography; and American government, civics and economics)
- One one-y̌er course in fine àts̄ or forégn language
- Two one-year cours̄es in physical education (unlēs̄s othērwisē exxemptēd by law)

The Educational Reform Act carries far-reaching implications. The Reforiio Act is a result of the deep concern over a decade and one-half of decreasing student achievement. The two key variables in this Rēform Act policy àre instructional time and course content.

Instructional Time

The incentive to increase instructional time through lengthening the school day and school year is a response to a central concern of schooling. Time is
the portal through which all learntng must pass; and all resources and efforts aimed at improved iearning must directly or tndirectily impinge on learning time. But instructional time wili resuit tn student learring only if students are actively partictpating in the teachtng-learning process. Recent research has identified important factors that influence students' active learning time. The Reform Act's focus on quality of school personnel; school management, and student discipline accords with the recent research findings. But although instiuctional time--or more prectsely active tearning time-is necessary for student achievement; it is not sufficient.

Gourse Content

Another important factor that affects student achievement is contentLegislators have focussed on this aspect by strengthening high school graduation requirements. For central subject matter areas; the Reform Act specifies minimum years of coursework. In doing that, legisiators obviousiy assume that more coursework in such subjects as mathematics and science wili mean more content in these subject areas. However, the recent legielation faides short of specifying graduation requirements beyond minimum time per subject āreá.

It would be unfortunate if the reader got the impresston from the singuiar focus of this report that time is the only important aspect of education in Callfornia worthy of study and comparison. While time is a crucial issue, it may well be that California students are equally shortchanged in the rigor, breadth; or depth of course content and its presentation. That issue; however; wās not addréssed by this study.

Thise report addrēsēs content only as a means of categorizing achievement and time use data, not ās a factor thāt áffects̄ àchievement itself. An extrā ordinàry amount of resourcēs will be needed to mount the additional coursēs and total schooling that the legislation will s̄timulate; therefore, it becomes of paramount importance to focus on how that time ī used. For example, using
 incrēāe ştudent achiēvement but only double the rēsourcē̄ expended. It s̄hould become a high priority to ennsure thāt students àré placed in coursēes thāt do not rēpeàt prēviously covered mātērial and thāt nēw coursēē ālōo provide new content. But even that is insufficient. Beyond increasing learning time and subject matter requirements, we will aloso hāve to scrutinizes prē̄ent coursē̄. Could pacing be increased, i.e., could the time needed for learning be decreased and consequently more content be covered? Is learning time efficientiy
 specified skilis and that students are not allocated learning time for skilis they have already mastered?

At the end of this report, we suggest various routes that should be taken to increase student learning and uitimately student achievement The HughesHart Educational Reform Act of 1983 sets a new time frame for schooing and points to priority iearning areas in setting high schooi graduation standards. This report inciudes statistical support for the important reforms in the act, but $\bar{t} \bar{t}$ aíso incudes evidence to show that merely ailocating more instructional tíme; $\bar{i}=\bar{e}$.; , more resources; is fnsufficient: Beyond quantity of schooíng; ít is quaíty of instruction and currículā priorities that educators have to focus on.

Learning Time

The past ten yeirs of research on schooling have strikingiy shifted attention toward the uses of resources--espectaliy teaching time-and their consequences for learning (see Wiley and Harnischfeger; 1974). Much of the conceptual underpinnings of this work are due to Carroit (1963) and have been extended by Bioom (1976) and Harnischfeger and Wifey (1976; 1978; 1983). Important empirical results as well as conceptual sumaries may be found fn Denham and Lieberman (1980) and Fisher and Beríner (1983).

Thus; active learning time is a concept that has redirected much of the éarliér research on school and teaching effectiveness to focus on the teachinglearning process and its determinants. This research has led to one simple but profound insight: A student's active learning time is a strong determinant of his ós hèr àchiévements.

Thiśs rēsearch impliēs that thère àre only four ways to increase achievement (Harnischfeger and Wiley, 1983). One is via a reduction in the time needed to lēarn. All the others depend on increasing active learning time. These latter thrēe routē consist of:

- Increasing the total amount of time allocated to learning
- Incrēāsing the portion of that allocated time thā is actually allowed for leārning
- Incrēasing the amount of this ālowed time thāt sudents activēy devote to lēarining

The primary focūs of studiē of total school time--dāy length and year length-is on the quantity of time āvailable, not its ūē. The ūe of thāt time determines what is leāned and how it is learned, thūs directly influencing active learning. Total time ī̄ allocated to particưlar subject areā topics, and learning tasks. Only the time made available for these activities can be used for learning; all other time uses can never result in learning.

Tlme Spent in School

Two yearis ago, a survey of elementary and secondary schools by a California school superintendent (Anton; 1981) conclided that California pupils are of fered less schooling than pupils nationwide- This finding stirred deep concern because of its obvious implication that less schooling reeults in lower achievement. It became one force in legislative actions that resulted in the Hughes-Hart Educational Reform and Finance Act of 1983 :

Anton's estimates of scheduled instructional time were compared to those found in a national study of known high accuracy (Compensatory Education Study, 1978): These 1976 data closely correspond to Anton's national time estimates (Table 1), as does CAP's sixth grade survey, made one year later than Anton's (1981-82 vis 1980-81): CAP collected from school officials information on subject matter time aliocations; as well as on practices and policies concerning time allocations: CAP's data collection resulted in an even slightly lower estimate of instructional time aliocation than Anton's. Sixth gradersi daily

Table 1
Mean Daily Minutes of Instruction and Length of Schooi Year for Californta and the Nation; by Grade

Grade	Nation		California		
	$1975-76$	$1980-81$	$1980-81$	$1981-1982$	$1982-83$
\bar{K}	203	191	182		
2	304	310	268		
3	308	311	268		
4	311	314	270		
$\overline{5}$	321	322	303		
6	323	323	304		
7	349	326	308	299	310
$\overline{8}$	350	332	308		308
9		333	309		
10		331	302		
11		332	305		
12		331	305		
Days per			178.5	176.0	
year					

Sources: 1975=76 national data are from the tabulations that were done as part of the 1978 Compensatory Education Study by the National Institute for Education; 1980-81 data for the nation and California are from Anton, 1981; the 1981-82 figure is from the CAP grade six survey, $1981-82$; the 1982-83 California Data are from Study of the Length of the School Day and School Year in California Schools, 1982-83, prepared by the Division of Planning, Evaluation, and Research, California State Department of Education, 1983:
scheduled intistuction is_estimated as slightiy greater than five hours in Anton's 1980-81 survey (308 minutes), while the average is just about five hours (299 minutes) in the 1981-82 CAP survey.

A comparison of CAP's éstimate for sixth graders in Caiffornia to Anton's 1980-81 ñationwide estimate, with consideration given to the shorter school year in Cāliforniā, shows that sixth graders in Calffornía are offered g3 hours less schooling than sixth graders nationwide. Thís is equivalent to 19 instructional days, or nearly one month of schooling. This difference is substantial ānd consistent=-the daily scheduled instructionai times for all grades in California are systematically shorter than those in the nation as a whole:

Most comonly, high schoolss in California offer six 50 -minute perióds óf instruction (Table 2), ié, a 300 -minute instructional day (Table 3). Over a third of the high school students (35.7 percent) are in schools that follow this patterni Generally, California high schools have 50- or 55-minute periods and schedule between five and seven periods per day.

Table 2
High School Instructionā Patterns:
Combinations of Length and Number of Periods

SOURCE: CAP data, $1982=\overline{8} \overline{3}$
*The percentage of schools with each patyern ís about the same as the percentage of students, except for seven periods of 45 minutes--a smali school pattern which represents 7.2 percent of ail high schools. The primary patterns (45 to 55 minutés, 5 to 7 periods) represented $9 \overline{6}$ percent of the schools and 93.5 percent of the students.

[^1]Tāble 3
Totāl Dāily Instructionāl Minutēs, by Pattern of Instruction

Minutes per period	Dāily minutēs of instruction		
	Pēriods peer day		
	5	6	7
45	225	270	315
50	250	300	350
55	2.75	330	385
SOURCE: CAP	982		

Comparing California data for instructional ot ferings in high school to national data shows that California high school students ā̄so havē received lēs̄ schooling because of fewer periods per day and a shorter school year (Table 4). California students have been of fered less coursework than students in the nation as a whole: Oñ the average, this shortfall is 73 hours in each year of high school. This is equivalent to 13 school days in California. Thús, over four years of high school; California high school students are of fered the equivalent of 52 days; or about two and a half months; less schooling than high school students nationwide.

Table 4
Hıgh Schooi Instructional Tıme; Caífornia añ the Nat́on; 1980

Time concepts	California	Nation
1. Minutes peè periood	54.1	52.1
	6.1	6.7
3. Minutes per $\overline{\text { day }}$ [(1) $\overline{\mathrm{x}}$ (2) $]$	$3 \overline{30.0}$	349.1
4. Days pēr year	177.3	180.1
	975	1,048

*Total high school instructional tme in Californiā is̄ 7.0 percent lēs̄ thān thāt in the nation according to dāta from High School and Beyond: According to the Anton survey (Table 1), the corresponding shortfall $1 \bar{s} 9 . \overline{2}$ percent.

Hypothéticāly, à typicāl C̄āifornian student's school life, ās exhibited iñ Tāble l, from kindērgarten through twelfth grade is 72,000 minuites shorter
 one-third sixth grade school years. This large discrepancy is the result of
shorter instructional days. and a shorter school year. California ranks among the ten states with the shortest school year in the nation (Digest of Educational Stātistices, 1980).

The extent of the differences in amount of schooling shows that relative to the nation, the instructional days in California are espectaily short in the primary grades ($K-3$): By the end of grade three, California students have been offered one-hālf yēār lēs schooling than students nationwíde- The yearly discrepancies in lātē grades are somewhat smaller, but they consistenty increase the cumulative shortfall.

The New California Standards for Instructional Time

This sumary picture of instructional offerings truly calls for new éfforts, as taken in the Hughes-Hart Educational Reform and Finance Act of 1983. This legísiation specifies new state standards for instructional offerings in elementary and secondary schools which are to be met by the $1986-87$ school year to qualify districts for supplementary funding (Table 5).

Table 5
Total Yearly Minutes of Instruction Required to Meet 1986-87 State Standards for Supplementary Funding

Grade range	Yearly minutes of instruction
	36,000
$4-8$	50,400
$9-12$	54,000

in inne with these new standards, CAP calculated on the basis of the Anton data (Table i) by what amount the school day or the school year needs to be extended to qualify for supplementary state funding (Table 6) - If districts would maintain a 176 day school year, school days for all grades, except for grades six, seven, and eight, need to be extended and the largest increase-of over one hour-would have to occur in high school if school districts would move to or maintain a 180 day school year, oniy grades four to éight would not have to lengthen the instrictional day to comply with the new state standards. if school disticts would retain dafly instructional offerings as assessed by Anton for 1980-81 (Table 1), then school years need to be substantially jonger for all grades except grades four through eight. On the average; kindergarten would nave to be offered for 198 days, the primary grades (one through three) would have school years of between 187 to 189 days; and high school offerings would have to be increased to between 213 and 215 days to comply with new state standards. Obviously, extensive resources are needed to meet the new legislated standards.

If these new standards were fully implemented, would Californiá students then be offered the same amount of schooling as students nationwide? Basing comparisons on Anton's national estimates (Table 1), the answer is no. A Cali= fornía student is offered 72,000 fewer minutes of schooling from kindergarten
through twelfth grade than a typical student in the nation. The new California standards reduce this gap by 80 percent to 13,000 fewer minutes. Thus; instead of having the equivalent of one and one-third school years less schooling; students in Calffornia would be offered one-fourth less of a school year. Even with the huge increase in offerings that is supported by the new legislation, California students would still lag behind students nationwide.

Table 6
Increasés in School Day and Yēar Required to Meet 1986-87 State Standards for Supplementày Funding

Grade	- Required minutes per day				Required days per year if 1980-8 8 i mínutés pēr day* are maintained	
	176-day year		180-day year			
	Daily	Increase	Daily	Increase		
	爯equíred	beyond ${ }_{\text {b }}^{\text {beosi }}$ days*	required	$\begin{gathered} \text { beyond } \\ 1980-\overline{8} 1 \text { days } \end{gathered}$	$\begin{gathered} \text { Required } \\ \text { days } \\ \hline \end{gathered}$	Increase beyond $17 \overline{6}$ days
K	205	23	200	18	198	22
1	287	19	280	12	189	13
2	287	19	280	12	189	13
3	287	17	280	10	$1 \overline{8} 7$	11
4	309	6	300	0	$17 \overline{8}$	2
5	309	$\therefore 5$	300	0	178	2
6	309	\ldots 1	300	0	176	0
7	309	$\because 1$	300	0	176	0
$\overline{8}$	309	0	300	0	175	0
9	$\overline{36} \overline{8}$	$\overline{6} \overline{6}$	360	58	215	39
10	$\overline{3} \overline{6} \overline{8}$	63	360	55	213	37
1i	$\overline{2} \overline{6} \overline{8}$	63	360	55	213	37
12	$3 \overline{6} 8$	63	360	55	213	37

末See Table i for 1980-81 minutes per day by grade.

Timé and Lēarning in Elementary School

The sixth grade time allocations to subject areas-mrom the 1981-82 assessment of California sixth graders and a national study carried out in 1976-77 (Hinckley et al., 1978)--are displayed in Tables 7 and 8. Table 7 exhibits national data on minutes per day of instruction of fered in reading and mathematics in grades one through six in 1976-77 (Hinckiey et ai.g 1978). The data indicate that nationally the number of minutes per day of reading instruc tion decreases substantially and continuously from grade one (about one and three-fourth hours) to grade six (about one hour). The California data for grade six match those for the nation. In mathematics the national data are essentially constant (at about an hour per day) across the elementary grades.

Tāblē 7
Mean Daily Minutē of Instruction in Reading and Mathematics， Nationallyy，by̆ Grāde，and Cālifornia，for Grade Six

Grade	Rēãing		Mathematics	
	$\begin{gathered} \text { Nation } \\ (1976-77)^{\star} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Californiā } \\ & (1981-82)^{* *} \end{aligned}$	$\begin{gathered} \text { Nation } \\ (1976=77)^{天} \end{gathered}$	$\begin{aligned} & \text { California } \\ & (1981-82) \star 天 \end{aligned}$
1	107	－	$\underline{5}$	＝
2	100	－	59	－
3	86	－	61	－
4	73	－	61	－
5	68	－	61	－
6	62	61	57	53

＊Adapted from Hinckleý et al．， 1978
※夫California Assessment Program，Ḡade Six Survey，$\overline{1} 9 \overline{1} \overline{1}-\overline{8} 2$

Table 8 shows that in grade six in California the basic skills areas＝ reading（ 61 minutes），writing／language（ 47 minutes），and mathematics（53 minutes）－－have the iargest time allocations，each approaching an hour on the average．These are followed by social studies（ 36 minutes），physical education （27 minutes），and science（25 minutes）Art，music，and health trail with about a quarter of an hour each．In tocal，the average instructional time per day is reported as about 5 hours，and noninstructional time（recess，lunch，and so on） is reported at about one hour，yielding a total school way of about 6 hours．

These time allocations are averages in two senses．First，they are the assessment of a school principal or other school official of the typical daily time spent on these subject areas．In a sense these are＂average＂values over different school days and over different school cilasses．Some of this variation is reflected in Table 9．About one－half of the schools rejort that there is little or no variation in subject area time aliocations．This report differs； however，depending on school organization．About three－quarters of schools with complētely departmentalized sixth grades report iack of varíat́oñ．

Data collected from teachers in other studies（Devault ē ai．；1977；Denham and Liebereman， 1980 ）indicate that the principals＇estimates mághe understate the actual variātion－ēspecially the figure of 46 percent for schools wíth seif－ contained classrooms．These other studies；which include data from ealifornfa and other states，indicate that bāsic skills time allocations may differ by three－or four－to－one across self－contained classes in the same school．

Instructional time ālocations also vary for students from different socioeconomic backgrounds（Table 10）．Using CAP＇s socioeconomic status（SES） index，we have assessed the sixth grade time ālocation data for schools with very low，typical，and very high socioeconomic student backgrounds．We have compared subject area time allocations for reading，writing／language，mathe－ matics，science，and social studies．Although the total amount of time allo－ cated to these subject areas is the same for all schools，there are sizable differences among types of schools，by subject area，These differences are iargest fōr reading．

Table 8
Mean Time Allocations, by Subjēct Arēa, in California; Grade Six, 1981-82

Subject area	Mean minutes pèr dāy
Readíng	61
Writing/language	47
Mathematics	53
Science	25
Social studies	36
Ar ${ }^{\text {c }}$	16
Music	14
Health	16
Physical education	27
Other	7
Total	302*
Total instructional time	299*
Total noninstructional time	67
Total school time (sum)	366
School day length	365
*The "Total" does not equal the "Total instructional time" because of adjustments for outlying (ōvíousiy incorrēt) v̄alū̄̄ .	

Table 9
Organization of Sixth Grade classes in Califfornia and Reported Variation in Time Devoted to Subject Āēā, 1981-8 $\overline{\mathbf{c}}$

Reported variation in time devoted to subject areas over classes	Percent of schools by organization of sixth grade classes				
	Self-contained clās̄̄roomes	Modified self-contained classrooms	$\begin{array}{\|l} \text { Partially } \\ \text { depart } \\ \text { mentalized } \end{array}$	$\begin{aligned} & \text { Completely } \\ & \text { depart } \\ & \text { mentalizè } \end{aligned}$	$\begin{gathered} \text { Ali } \\ \text { BChools } \end{gathered}$
Only one class per grade	9	4	4	6	8
Lítile or none	46	58	65	76	52
Variation	45	38	31	18	40
Total	100	100	100	100	100
Percent of aid sis oools	59	23	15	3	100

 percent a ailocate the largest amount of time to reading (63 minutes per day): Students in these schools are offered 9 percent more reading instruction than students who are enrolled in schools in communities of high socioeconomic level (the highest io percent): Since the total time allocation to the above-named subject areas is the same for all schools, the extra reading time must effect à shorter time aliocation in other subject areas. Mathematics time allocation is not cut. But an increase in time allocation to reading tends to decrease the time aliocatínō mathematics.

Table 10
Time Allocations Across Subject Areas for California Schools Serving Commities of Different Socioeconomic Levels, Sixth Grade; 1981-82

$\begin{gathered} \text { SES } \\ \text { percentile } \\ \hline \end{gathered}$	- Instructional time (minutes/dày)					
	Reading	Writing/ language	Mathematics	Science	Sociā1 studiēs	Total
10	63.0	44:9	56.0	25.9	35.5	225.3
50	60.1	46.1	55.9	26.6	36.4	225.1
90	57.4	47.8	55.7	27.2	37.3	225.4
Differences ($10-90$) Minutes per day	+5.6	-2.9	+0.3	-1.3	-1-8	
Percent	+9.3	-6.3	+0.5	-4.9	-5.0	

It should be noted, however, that these numbers refer to somewhat arbitrary indicators of efferts to structure the teaching day to achieve general curricular ends. As such, they may not be good indicators of the types of learning that take place; subject areas are heavily overlapping and interactive. For example; a reading lesson may very effectively communicate important scientific or historical concepts or principles. Similarly, the act of reading for a history project cañ faprove reading skills. In fact, the case can be made that thè increased effectivenēs̄ of modern reáding programs is largely cancelled by ignoring this basic principle, i.e., by teaching reading as reading, history as history, etc. Research findings support the logic that the current emphasis on content areas--and reading and writing in the content areas=-is the best way to improve achievement in all school subjects̄.

At the sixth grade level, the assignment of homework varies cons derably, by subject area (Table 11). Ninety-five percent of sixth graders report regular homework in mathematics, but only 61 percent do so for writing. And only 66 percent of these students report having had homework in any subject the previous day.

Not reported \bar{i} table 11 is the relationship between the students' social backgrounds and the assignment of homework. The highest rates of homework assignment for reading; writing; and mathematics are for students whose parents are employed in unskilled occupations. On the other hand, these same students have the lowest rates of homework assignments-in comparison to other occupational groups-for science and social studies. These findings are strongly consistent with the earlier finding of greater emphasis on reading and less emphasis on science and social studies in schools serving low socio economic status communities.

Table 11
Sixith Grade Students' Reports of Amounts of Homework Assigned; by Percents; by Subject Area (CAP 1981-82)

Subject arēa	Pērcent rēporting
Usually have homework	
Reading	82
Writing	61
Mathematicss	95
Science	63
Social situdiēs	80
Yesterday did homework	
Any subject	66

SOURCE: CAP dāta, 1981-82

Aside from direct policy issues about the amounts of time to be spent on homework and the subject-area priortties for this time; central questions arise about who sets these policies. CAP's sixth grade school questionnaire touched on this issue (Table 12). The most surprising finding is that these policies are either set at the district ievel or left to the individual teacher. The school principal-who has emerged in recent research on school effectiveness as the key instructional leader-seeming ty plays atmost no role in homework policy in California.

This bríéf look at the important topic of homework merēy sērvē to show the complexity of the issue. The appropriate amount of homework must vary according to the studentsi needs, school priorities, and the subject being studied. Finaily, the roles of parents, teachers, principals, district personnel, and schoó board members in developing and implementing homework policy and priorities need to be clarified.

Table 12

Origin of Homework Policies California Elementary Schools̄; 1981=82

Origin of policy	Percent of schools
Teacher, not school	$4 \overline{8} . \overline{8}$
School, not district	1.2
District	56.0
Tôtal	100.0

'Time and Learning in High Schoool

In this sectón we explure and compare time and learning in California high schools, our touchstones for compartson being the nation as a whole and the State of New York. The latter was chosen because of similarities in size and because New York's educational system-with its regents examinations and diploma and its iong-standıng statewide graduation requirements-served as a major comparison point in the debates which led up to the California reform legisiation. The section is divided into four parts:

First, the achievement test scores of California students are compared with those of other students. Separate comparisons are made on the basis of (1) all students; (2) the coliege bound; and (3) those who took only advanced achievement tests for college entry.

Second, these groups are compared on the basis of the number of high school courses the students in the groups completed in the bastc academic subjects.

Third, the results of a special 1982-83 CAP survey of Caiffornta sentors are reported. This survey focussed on the specific mathematics and science courses the students have taken, the number of semesters of study fnr each; and the grade the students were in at the time of study.

Fourth; some relationships between CAP grade twelve mathematics test scores and the number of mathematics courses taken are analyzed and discussed.

National Achievement Comparisons and Trends

In this sect, η the aptitude and achievement of California's high school seniors are compareu with those of students nationwide. The bases for the comparisons are provided by the High School and Beyond study and scores on the Scholastic Aptitude Test and the College Entrance Examination Board's achievement tests.

High School and Beyond Test Information

The High School and Beyond, tudy allows for comparison of rēading and mathematics achievement of California twelfth graders and that of twelfth graders nationwide (Table 13). Californī twelfth grā̃ers̄ comparē fāvorābly to tweifth graders in general. Given the lower amount of schooling that California students are offered; the data in Tabie 13 might imply higher productivity of Caltfornfa schools: Focussing on the New York contrast, however, we find fairly large differences. In reading and mathematics New York seniois outperform Catifornians by about 20 percent of the standard deviation.

Scholastic Aptitude Test Results

Although California high school seniors in general compare favorably in their reading and mathematics achievement test scores to hígh schooi senfors nationwide, concern has been volced over the recent SAT scores; bécause thé California college-bound seniors did not match the new; sitghtiy upward trend of SAT scores for twelfth graders nationwide (Table 14). some ciarification on this issue is needed. The Scholastic Aptitude Test is taken by about one-third of high school seniors nationwide. Also, about one third of hígh schooi seniors take the SAT in California. The mathematics scores of California coliege-bound seniors on the 1983 SAT indicated higher mathematics aptitudes than those ō college bound seniors nationwide. However, the verbal aptitudes of Caífornía college-bound seniors were lower than the verbal aptitudes of college-bound seniors across the nation.

A comparison of Callfornia college-bound seniors verbai scores to those of college-bound seniors nationwide over the past ten years, however, reveals a much larger test score drop for Califormia test takers. fn Caiffornia, verol SAT scorē dropped by 30 points; nationwide, verbal scores dropped 20 points. Tēn yeārs àgo, Cālfornịa SAT test takés had much higher verbal SAT scores thã SAT takers nationally.* Mathematics SAT scores have dropped iess dramatically over the pāst décade than those of college-bound seniors nationwide.

Tāble 13

Meān Reading and Nāthematics Scores uf High School Seniors, California and the Nation, 1979-80

Test area	Mean score, * by lo ation			Difference	
	California	New York	Nation	CA Vs Nation	CA ve NY
Vocabulary					
Part I	51.4	52.3	50.0	1.4	-0.9
Part II	50.3	51.7	50.0	0.3	-1.4
Readíng	50.1	52.1	50.0	0.1	-2.0
Mathematics					
Part I	$50 . \overline{6}$	52.6	50.0	0.6	-2.0
part jo	50.3	52.1	50.0	0.3	-1. 8

SOURCE: Special analysis of the High School and Beyond base jear data by CAP and the New York State Education Department
*These are standardized scores. The values have been transformed so that the wefglited national mean is 50 and the standard deviation is 10 . The vocabulary tests are five-option, miltiple-choice questions requiring selention of a synonym. The reading test consists of five passages, each followed by four multiplē-choice questions. The mathematics tests cover basic mathematics (Part I) and more advanced high school content (Part II), primarily algebra.

[^2]| Cātegory | SAT scores | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1973 | 1974 | 1975 | $197 \overline{6}$ | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 |
| Verbāl | | | | | | | | | | | |
| California | 452 | 450 | 435 | 430 | 427 | 427 | $42 \overline{8}$ | 424 | 426 | 425 | 421 |
| Natuon | 445 | 444 | 434 | 431 | 429 | 429 | 427 | 424 | 424 | 426 | 425 |
| Difference | 7 | 6 | 1 | -1 | -2 | 2 | 1 | θ | 2 | -1 | -4 |
| Mathematics | | | | | | | | | | | |
| California | 485 | 484 | 473 | 470 | 470 | $46 \overline{6}$ | 473 | 472 | 475 | 474 | 474 |
| Nation | 481 | 480 | 472 | 472 | 470 | 468 | 467 | $4 \overline{6}$ | $4 \overline{6}$ | 467 | $4 \overline{6}$ |
| Difference | 4 | 4 | 1 | -2 | 0 | -2 | 6 | $\overline{6}$ | 9 | 7 | $\overline{6}$ |

SOURCE: College Entrance Examination Board's reports on collegembound senfors

Despitē décrēāsēs in aptitude scores, the Cālifornia verbal score (425) in 1982 was nearly the same ās that of New York (429). There was agreater difference in the mathematics scores for Californiá and New York-474 and 492, respectivelȳ. The difference is magnified by the fact that a considerably smaller proportion of California students take the SAT (sēe Table 15). In California, 25 - 4 percent of high school age students tcok the tēst in New York, 44.3 percent did. In other words, the California students form a $\bar{s} t \bar{a} t i \bar{s} t i c a ̄ l y$ more select group and should, therefore, be expected to be approximately the top 25 percent among California's high school students. They were outs̄cored by approximately the top 45 percent of New York students:

Coliege Entrance Examination Boardis Achievement Test Resiilts

Beyond the verbal and mathematics aptitude tests; many college-bound high school seniors also take achievement tests in various sübject matter areas. The achievement test scores show a more revealing picture of school learning, because they are innked more directly to specific course content a comparison óf achievement tess scores óf california college-bound high school seniors to coollegē-bound hīgh s̄chool seniors elsewhere cannot merely focus on their achievement test scores, because relatively more students in California take one or more ō these achíevement tests than do similar groups of students nationwide. One reason for this is that one entrance requirement of the University of California is that students take three achievement tests: Engī̄̄ composition, mathematics, and a foreign ianguage or social scíencés area test. Thus, in contrast to the verbal and mathematics नptitude tests for which the california and national proportions are quite similar, the subjectmattermsecific achieve= ment tests are taken by larger proportions of Caiffornia students than by students nationwide.

Achievement tests are given in English composition and ifterature, mathe matics (I and II), biology, chemistry, physics; American history, foreign languages, and several other areas. Most Calfornia students take the tests
in Engifsh composition; mathematics, and American history; the history test fulfilis the social science requirement in California. In this section, however, we will restrict our focus to test scores in mathematics and science. We will also contrast the performance of California seniors with those in New York State as well as those in the nation as à whole.

As we noted above, students in different parts of the country take the Cotlege Entrance Examination Board's tests with different frequencies. Although about a quartē of all students aged fourteen to seventēen take the basic SAT tests in California and in the nation as a whole, almost 45 percent take them in New York (Table 15). When we examine the implications of this for the propor-
tion taking the Coilege Entrance Examination Board's anievement test tion taking the College Entrance Examination Board's achievement téstss, we see further differentials- For example; in 1982; about 2 percent of California SAT takers took the biology achi evement test, and about 9 percent of New York SAT takers did so. As a percent of an age group, however, the rāē̄ were 0.5 percent and 4 percent; respectively; an eight-fold difference:

If we examine these rates tn Table 15; three striking facts emerge:

- The rates of mathematics achíevement test taking (in terms of age groups) are similar for both states and the nation as a whole:
- Science achievement test taking in New York ís much more comon than in either California or the nation as a whoie. This is undoubtedy due to much larger proportions of an age group reaching advanced courses. We will discuss this issue further below.
- Thère wās à doubling of science achievement Eest taking in California betwēn 1982 and 1983. This brought test taking ieveis in California to the national level, but they still remain at about one-thír of New York's 1982 lēvēls.

To evaluate thēse dāta, we must also consider Table $1 \overline{6}$. En gererai, within a single educational system, if a larger proportion of an age group were to take an achievement test, we would expect that the larger group would have iower average aptitude than the smaller, i.é, be lēs̄ highly selected. This is because we generally expect the most able students to take advanced test \bar{s}. An example of this phenomenon occurred between 1982 and 1983 for californía physics test takers The percentage of the age group taking the test doubled from 0.2 to 0.4, and the average mathematics aptitude score of the test takers fell from 663 to 651: A similar result occurred for New York in 1982 versus California: With 0.8 percent of the age group taking the test, the mean mathematics score in New York was oniy 636; lower than either year for the california test takers.

This pattern, however, is not repeated for the other tests. In chemlstry, biology, and mathematićs fo the mathematics aptitude levels of New York seniors taking these achínement tests are either about equal or absolutely greater than those with substantialiy iower rates of test taking clearly, New York is doing a better job of mathematical preparation for those in the top 1 to percent of an age group than either Caiffornia or the rest of the nation.

Tablē 15

Pércent of Students Taking the College Entrance Examination Board's Aptitude and Selected Achievement Tests; Californiā; New York; and the Nation; 1982 and 1983

Cātegory	Cā1iforniá		$\frac{\text { New York }}{1982}$	Nation	
	1982	1983		1982	1983
$\frac{\text { Percent of students taking }}{\text { SAT* }^{*}}$	25.4	26.3	44.3	24.3	24.7
percent of SAT takers taking achievement test					
Mathematics I	26.0	26.1	15.7	14.7	14.8
Mathematics II	6.3	7.1	2.4	3.8	4.1
Biology	2.0	4.6	8.8	4.1	4.4
Chemistry	1.4	2.9	5.7	3.5	3.7
Physics	0.7	1.4	1.9	1.6	1.7
Percent of students taking achievement test					
Mathematics I	6.6	6.9	7.0	3.6	3.7
Mathematics II	1.6	1.9	1.1	0.9	1.0
Biology	0.5	1.2	3.9	1.0	1.1
Chemistry	0.4	0.8	2.5	0.9	0.9
Physics	0.2	0.4	0.8	0.4	0.4

*These are the total numbers of SAT takers as a percent of the average singleyear age group in the state or nation for individuals fourteen to seventeen

íf we now turn to the sćfence achievement test performances themseives, we must be careful to state what we are evaluating. Differential performance can come about because of differences in preparation=arrived at because of either
 who have better preparation. or it may come abouc by differences in the quality and quantíty of the science education itself. Since our evaluation of performance differences and their implications will strongly depend on whether they are a consequence of prerequisite skills at course entry or cāuēd by the quality of the subject-specific course instruction itself, we must rēāe the achievement leveis $\overline{\text { to }} \overline{\mathrm{t}} \overline{\mathrm{h}} \mathrm{e}$ aptitude $\overline{\mathrm{l}} \mathrm{evel} \bar{s}$ of the test takers.

Because the basic scale of the achievement scores īs similar to that of the aptitude scores (ranging from 200 to 800), the rough adjustment of subtracting the aptitude levél from the achiēvement lēvel is employed. Thiss is not à precis̄e adjustment, but it is sufficiently accurate to allow the assēssment of gross differences in performance.

Mean Achievement and Aptitude Test Scores of Collegē-Bound Students In California; New York; and the Nation Who Took Selected College Entrance Examination Board Achievement Tests, 1982 and 1983

Achievement tēst	Achievement test scores			Aptitude test scores					
	CA	NY	Nation	CA	NY	Nation	CA	NY	Nation
1982									
Mathematics $\overline{\mathrm{I}}$	522	575	545	532	580	552	479	525	501
Mathematics II	655	670	661	$6 \overline{38}$	658	646	533	569	553
Biology	541	587	548	565	576	564	524	540	527
Chemistry	590	604	575	649	617	619	550	545	539
Physics	614	612	592	$\overline{6} \overline{3}$	636	642	537	544	537
1983									
Mathematics I	521	Not	543	535	Not	556	475	Not	500
Mathematics II\|	646	$\begin{aligned} & \text { āvail= } \\ & \text { \|ābl̄e } \end{aligned}$	655	637	$\begin{aligned} & \text { avaí1- } \\ & \text { able } \end{aligned}$	649	520	available	550
Biology	518		544	561		570	495		523
Chemistry	562		569	$63 \overline{3}$		624	510		536
Physics	-590		595	651		647	505		536

SOURCE: The College Entrance Examination Board's reports on colilege-bound seniors

Table 17 exhibits these differencē and contrasts them. A higher assigned vaiue of the difference indicates that the performance, adjusted for aptitude ievei; is "better" than the performance corres ponding to a lower value. Thus, for Caííforniain 1982 the mean biology achievement level was 24 points below the mean mathematical aptitude level of the test takers (565 = 541). For the nation the achievement level was only 16 points below the aptitude level. Thus; the contrast column indicates a superiority of 8 points in adjusf de performance fō $\overline{\text { the }}$ nation vs: California:

Examining the adjusted contrasts, we find:

- Smali differences in adjusted mathematics performance between Cāíforniā, New York; and the nation
 and the nation over Caiffornia

Our main conclusion must be that New York is doing a superior job of science educatioñ in three regards:

- Mathematical preparation
- High proportions of students taking advanced courses
- Superior achievement in the courses themselves

Table 17
Differences Between the College Entrance Examination Board's Mathematics and Science Mean Achievement Scorēs and Mathematics and Verbal Aptitude Scorés, California, New York, and the Nation, 1982 and 1983

High School Coursetaking

The data and discussion of the coursetaking characteristics of high school seniors are presented in two parts: (i) for all high school seniors; and (2) for college-bound seniors.

[^3]
All High School Seniors

Table 18 exhibits average coursework of California twelfth graders from the ninth through twelfth grade in several subject areas. Students take more English than any other type of coursework. The average rumber of years of English taken is 3.8. This is followed by sociai studies (3.1 years), physical education (3.1 years), mathematics (2.8 years), science (2.1 years); and foreign lānguage (1.5 years). Twenty-nine percent ō C̄aíifornía seniors report no forēgn lānguage coursework in high school. ${ }^{\text {* }}$

Tabie 18
Pércent of California High School Seniors Reporting Vārious Amounts of Coursework; by Subject Area; 1981-82

Subject area	Mean yeāars	Percent of students; by number of years of coursework					
		0	1	2	3	47	Total
English	3.8	0	1	3	22	74	100
Mathematics	2.8	0	9	30	32	29	100
Science	2.1	1	33	36	20	10	100
Social studies	3.1	1	6	15	41	37	100
Foreign language	1.5	29	21	31	13	6	100
Physical education	- 3.1	1	2	24	33	40	100

SOURCE: CAP data, 1981-82

On the other hand, 74 percent report taking four or more years of English. The percent of students reporting similarly high levels of coursees taken in other subject areas is substantially lower--physicāl educātion (40 percént), socíal studies (37 percent), mathematics (29 percent), sciēnce (10 pércēnt), and foreign language (6 percent):

[^4]In additional tabulations, we found that only 1 percent of California sentors take four or more years each of English, mathematics, science, and forelgn language. Even when the criterion is dropped to three years of science and foreign language but four years of English and mathematics, only 5.5 percent of California high school seniors report taking that amount of higher level academic coursework.

Comparing the California data on courses taken to national data is diffi= cult for two reasons. Purely statistical national data on courses taken are based on institutional reports that yield enrollment rates for particulár courses but do not link aggregate course regis̄trātions to the individuales who produce them (Ostendorf, 1975). Also, since thēse surveys cover single years, it is impossible to éstimate cumulative years of courssē tāken in terms of the percentage of individuals with zero, one, two, and so on, courses or years of coursework. Survey data on high sachool students, such as those from the National Longitudinal Study of High School Clāsss of 1972 and High School and Beyond, arè potēntiālly compārāble dātā, but in both cāseses, the data were collected for thrēe rāther thān four years of high sechool.

One approximate comparison, however, is presented in Table 19. Essentially all California high school students take at least one year of mathematics. By assuming that students take their first (or only) mathematics course in ninth

Table 19
Percent of Twelfth Graders Reporting Specified years of Mathematics Coursework Taken in the Last Three Years of High School, 1979-80 and 1981-82

Years of mathematics	1979-80*		1981-82**
	Nation	California	Californta
0	7.8	9.7	$\overline{8} . \overline{6}$
1	27.3	32.1	30.1
2	33.5	32.6	32.1
3 or more	31.4	25.6	29.2
Total	100.0	100.0	100.0
Median years	1.44	1.25	1.35

*These data are derived from the High School and Beyond survey conducted by the National Center for Education Statistics in 1980.
**These figures have been adjusted to reflect the fact that the High School and Beyond survey inquired only about the final three years of high schcol and that essentially ali California students take at least one mathematics course. Thus, the values have been reduced by one year.
grade,* CAP derived twelfth grade data that are in ifne with those of High School and Beyond. It can be seen $\bar{f} \bar{r} \bar{m}$ Tabie 19 that California level $\overline{\bar{s}}$ of mathematics coursework are similar to; but sifghty less than, those acros̄ the nation.

One direct comparison of specific coursetaking is avaitable from High School and Beyond. This involves the specific courses in college preparatory mathematics and science, which are precursors of the Coliege Entrance Examination Board's achievement tēsts. Table 20 exhibits the percentage of seniors who have enrolled in these courses in California, New Xork, and the nation: The table indicates great similārity between California and the nation for mathematics but a small systematic deficit for California in science. Comparisons with New York, however, confirm the previous conciusion based on achievement test data: New York seniors are substantially better preparē iñ mathematics; futly twice as many students, proportionately, take trigonometry (53 percent) and calculus (i6 percent): Science is similar: Twice as many students enroli in physics, and 40 percent more enroll in chemistry. This ís truly a striking confirmation of the achievement differences.

Table 20
Percent of 1980 Seniors Reporting
Enrollment in Advanced Science and Mathematics Courses

Course	California	New York	Nation
Aigebra I	81	-	7
Aigebra İ	50	86	79
Geometry	59	59	49
Trigonometry	25	68	56
Calculus	8	53	26
		16	8
Physics	17	36	19
Chemistry	33	55	37

SOURCE: These data were prepared by Penny A- Sebring, School of Education, Northwestern University, 1983, from High School and Beyond data.

College-Bound Seniors

Of special interest is the coursework of college-bound students, who compose about onefourth of the relevant age population in California as weli as in the United States as a whole. A comparíson of coursework of California college bound senfors to that of college-bound seniors nationwide is shown in Tāblé 2l. California college freshmen of 1983 tended to have less coursework

[^5]than college freshmen nationwide for ali core subject areas. On the whole, the latest year's comparison of coursework in Engísh, mathematics; and foreign language looks more favorabie $\bar{f} n$ Cajıfornia than it has in previous years. In physical science, however, oniy 43 percent of California's college-bound seniors report taking two or more years of physicai science as compared to 61 percent of college-bound seniors nationwide.

Tāぁe 21
Coursework Levels of College-Bound Seniors in Callfornia and the Nation, 1973-83

Years	Percent of seniors with ourse ievel, by year										
of study	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
English											
4 or more years											
California	72	69	68	67	69	73	78	81	88	90	91
Nation	90	90	89	88	89	90	91	91	92	93	93
Difference	$=18$	-21	-21	-21	$=21$	$=17$	-13	$=10$	$=4$	$=3$	-2
Máthematics											
Cōilifornia	35	35	34	36	$\overline{3} 7$	$3 \overline{8}$	42	45	47	51	55
Nation	49	48	49	51	50	53	55	57	59	61	64
Difference	-14	-13	-15	-15	-13	-15	-13	-12	-12	-10	- 9
Foreign											
Ianguage											
3 or more years											
C̄alifornia	40	37	34	33	32	32	33	34	ji	38	38
Nation	44	43	41	39	37	38	37	37	37	39	39
Difference	- 4	- 6	- 7	- 6	- 5	- ó	-4	- 4	-4	- 1	- 1
Physical											
$\frac{\text { science }}{2 \text { or more }}$											
$2 \text { or_more }$ years											
Cajifornia	31	36	39	40	37	37	39	40	40	41	43
Natíon	47	48	49	50	54	57	$5 \overline{3}$	58	5.8	60	61
Differerence	-16	-12	-10	-10	-10	-20	-19	- 18	-18	-19	-18

SOURCE: The College Eñ rance Examination Board's reports on college-bound seniors

Since coursework in mathematics and science is almost always prerequisite to achievement in these areas, the lighter course loads of students in california are significant: California college-bound seniors take significantly less coursework in mathematics and science (chemistry, physics; liology) than do coliegé-bound seniors in the United States as a whole (Table 22). We note also that New York generaliy exceeds the national average, but here we must keep in mind that these data for New York represent 45 percent of an age group as compared to only about 25 percent for California and the nātion. This means that-二relatue to the total numbers of students--almost twice ās many New York as Californła senfors complete these levels of coursework:

Table 22
Mean Years of Coursework in Acaderic Subjects for College-Bound Seniors, California; New York; and the Nation; 1982 and 1983

Subject area	Caltfornia		New York	Nation	
	1982	1983	1982	1982	1983
					4.0
English	4.0	4.0	4.0	4.0	
Mathematics	3.4	3.5	3.5	3.6	3.6
Science	2.7	2.7	3.3	3.2	3.3
Social studies	3.2	3.2	3.6	3.2	3.2
Foreign language	2.3	2.3	2.5	-2.2	2.2

SOURCE: The College Entrance Examination Board's reports on coliege-bound seniors

> Coursetaking in Mathematics and Science

Table 23* presents the percent oi students in grades nine through tweive enrolled in mathematics courses over the past three schooi years. The trend is encouraging. Enrollment in general and remedial máthemátićcs courses decéíned by 8 percent between $1980-81$ and $1982=83$; and coliege-preparatcry mathemat́tcs course enrollments increased during the same period by 11 percent (Table 2 $\overline{3}$). The enrollment incrēase in collegepreparatory courses occurred only iast year and māinly in àlgēbra.

Enrollments in science coursés also show a significant increase in the 1982-83 school year $\bar{a} \bar{s}$ compārēd to thè two prior yéars (Table 23). Especially, general science courses hāve benéfitèd from the recent focus on séciencè: Coursē enrollment increased by ll percent over à two-yeā period. Collēgē-prēparatory science courses have experienced enrollment increases of 3 percent during the same period. Note that these increases occurred in chemistry and physics only:

[^6]Table 23
Māthematics and Science Enrollment as Percents of Total Enroilment in California Schools, by Type of Course, $1980=81$ through $1982-\overline{8} \overline{3}$

				1980-81 th	ough 1982-83
Course topic	1980-81	1981-82	1982-83	Difference	Percent change
Mathematics					
General/remedial	32.0	28.8	29.4	-2.6	- 8
College-preparatory	38.4	28.7	43.1	+4.7	F11
Beginning algebra	18.8	18.8	20.9		
Plane geonetry	9.0	9.1	9.8		
Intermediate algebra	4.1	4.2	5.1		
Precalculus advanced topics	5.9	5.8	6.3		
Calculus	0.6	0.8	1.0		
other courses	8.3	9.9	10.0	+1.3	+20
Total	78.7	77.4-	82.5	+3.8	$+5$
Science					
General	17.0	17.2	18.8	+1.8	+11
College-preparatory	22.7	22.4	23.3	+0.6	$+3$
Eiology	16.0	15.5	15.9		
Chemistry	4.7	4.8	5.2		
Physics	2.01	2.2	2.31		
Advanced courses	1.4	1.3	1.31		
other courses	6.6	6.8	7.7	+1.1	+17
Totat	46.3	46.4	49.8	+3.5	+ 8 .

SOURCE: Calffornia Basic Educational Data System (CBEDS)

Timing of Coursetaking

CAP's 1982-83 survey of mathematics and science coursetaking produced information about the completion of specific courses in each semester from grades eight through twelve:天 Courses are categorized in both areas into two groups: college-preparatory and any other, or general. At different points in this report; we display summary figures for these subdivisions and for total coursetaking in each area. For science; college-preparatory courses consist of biology, chemistry; and physics. For mathematics; they are algebra (all levels), geometry, trigonometry, and advanced topics.

The timing of coursetakits is exhibited in Tables 24; 25; and 26. First; we see that the majority of 1982-83 seniors took science only in grade ten, and even at this grade only 59 percent were enrolled in science during the second semester. General science is primarily taken in grades eight and nine; and college-preparatory courses are rare in those grades. These science courses are

[^7]mostiy taken in graies ten through twelve, with bioiogy; chemistry, and physics taken primarily in grades ten; eleven; and tweive; respectively (Täble 25). As can be seen below, the major falloff over grades is due to smaller proportions of students enrolling in the more mathematically stringent courses. However; the extremeiy smail enrollment rates for grade twelve; especially in the \bar{s} econd semester, indicate major reduction in academic coursetaking for these seniors in grade twelve. Because this reduction is paralleled for mathematics (Tables 24 and 26); it reveals a serious point of concern. Finaliy, for science; we note thāt only 4 percent of these senioris did not take any scitence in grades nine through twelve and that almost 70 percent took at least one semester of college-preparatory science.

The picture for mathematics is more div̄erse. Algebra is started by some students before ninth grade and is still taken by significant numbers of students in eleventh grade (Table 26). Plāne geometry is taken mostiy in grades ten and eleven. Intermedfate algebra has its highest enrollment rates in grades ten and eleven; and trigonometry and advanced topics are primarity taken In grades è even and twelve- General mathematices courses are conmon for students in each of grades eight; nine; ten; and eleven. Again; there is a severe dropoff in mathematics coursetaking in the senior year and especialiy in the final semester. During the last four years of high school; oniy 3 percent of students did not take any mathematics; and over 80 percent took at ieast one semester of college-preparatory work.

Table 24
Percent of Students Taking Mathematics
and Science Courses in Grades 8-12; by Grāde and Semester

Grade	Semesterer	No coursework		Some coursework			
		Mathematics	S̄c̄iencēe	Any coursework		College-preparatory	
				Mathematics	Sciencē	Mathematics	Science
8	First Second	46	51	54	49	13	4
		36	46	64	54	17	3
9	First	34	56	66	44	47	8
	Second	21	55	79	45	55	8
10	First	36	44	64	56	52	36
	Second	30	41	70	59	57	40
11	First	50	57	50	43	43	30
	Second	47	53	53	47	46	33
12	First	73	75	27	25	23	16
	Second	87	88	13	12	12	8
rotal							
Grad	-8 8-12	2	3	98	97		
Grade	\% 9-12	3	4	97	96	8 Bi	69

[^8]Table 25

Percent of Students Taking Science Courses; by Grade and Semester and Total Years of Science; Grades 8-12

Grade	$\begin{gathered} \text { Semes- } \\ \text { ter } \\ \hline \end{gathered}$	General/other					Coliege-preparatory				Total
		Life	Physical	Earth	Other	Total	$\begin{array}{\|c} \hline \text { Biol- } \\ \text { ogy } \\ \hline \end{array}$	$\begin{aligned} & \text { Chem- } \\ & \text { istrry } \\ & \hline \end{aligned}$	Phystcs	Total	
8	First	30	9	4	2	45	2	1	1	4	49
	Second	30	13	5	2	50	2	1	1	4	54
9	First	16	12	5	3	36	6	1	$\dot{1}$	$\overline{8}$	44
	Second	14	14	5	3	37	6	1	1	$\overline{8}$	45
10	First	9	5	3	3	20	32	3	1	36	56
	Second	8	5	3	3	19	$3 \overline{6}$	3	1	40	59
11	First	4	3	2	4	13	14	14	2	30	43
	Second	4	3	2	$\overline{5}$	14	15	15	3	33	47
12	First	2	2	1	4	9	4	6	6	16	$\underline{2}$
	Second	1	1	=	2	4	2	3	3	8	12

SOURCE: CAP data, 1982-8

Table 26
Percent of Students Taking Mathematics Courses, by Grade āñ Semester and Total Years of Máthematics, Grades 8-12

Grade	$\left\lvert\, \begin{gathered} \text { Semes } \\ \text { tér } \end{gathered}\right.$	General	College-preparatory						Total
			Beginning algebra	$\begin{gathered} \text { Plane } \\ \text { geometry } \\ \hline \end{gathered}$	Inter. àlgēbrā	$\begin{aligned} & \text { Trigo- } \\ & \text { nometry } \end{aligned}$	Aavanced topics	Total	
8	First	41	12	-	1	-	-	13	54
	Second	47	15	1	1	-	-	17	64
9	First	21	37	6	4	-	-	47	68
	Second	24	43	7	5	-	-	$\overline{5}$	79
10	First	12	18	22	10	1	1	52	64
	Second	13	18	25	11	2	1	57	70
11	First	7	6	12	16	6	3	43	50
	Second	7	6	13	16	7	4	46	53
12	First	4	2	4	$\overline{5}$	$\overline{6}$	6	23	$2 \overline{7}$
	Second	1	1	2	3	2	4	12	13

SOURCE: CAP data, 1982-83

Collége-Préparātory Vērsus General

In Tables 27 and 28, we display the pattern of coursetaking-coliegeprepāātory vs. géierā māthematices and science for 1.982-83 seniors. In science only 4 percent tātē no coursēs at all. Twenty-seven percent=-the total for row 1 (31 percent) minus the percentage of those taking no courses (4 percent) 4 take only general sciencé; 29 percent-the total for column 1 (33 percent) minus the percentāge_of those taking no courses (4 percent) take only college preparatory courses̃. Forty percent tāke both types of courses=all students (ioo percent) minus the percentage of those who tāe only general sclence (27 percent) minus those who take only collēge préparatory coursēs (29 percent) minus those who take no courses (4 percent): In total, only 18 percent of sutudents accumulatē two or more years of college-preparatory science. Only 40 percent meet the new 1986-87 requirement of two fuill yēars of any kind of science.

Table 27

Percent of Seniors Taking Varying Numbers of Semesters of College-Preparatory Versus Other Science, Grades 9-12

Semesters of
other science coursework

Semesters of college-
preparatory coursework
$\begin{array}{lllll}0 & 1 & 2 & 3 & 4+\end{array}$

2-3
semesters
(45\%)

$\begin{array}{lllllll}\text { Total percent other } & 33 & 17 & 34 & 6 & 10 & 100\end{array}$

Mathematics presents ā morē differentiāted picture (Tāblē 28). Thrēe percent of āll senior̄ graduāte with no mathematics cours̄ēs in gradēs nine through twelve. Fiftymseven percent take only college-preparatory courses, and 16 percent take only generāl mathematics. This lēāvē only 24 percent with ḡenèral ànd collegèpreparātory coursework, a clēarer tracking than for science. Fully 46 percent of seniors take two or more yēars of collēgépieparatory mathematics, ānd 61 percent meèt the new two-yēar rōquirements of totā māthématics coursetakin̄g, which iñclūdes generāl and college-prepāātory coursework (30 percent plus 31 percent).

If we recall that the CAP mathematics test covers content which is taught primarily in prehigh school mathematics courses, then we expect smaller relations between nathematics coursetaking and achievement than would be obtained with a test focussed directly on the content of high school=level courses. To alleviate this problem, we have sélected three items from the instruments which focus specifically on high school-level college-preparatory content.

Table 28

Item A 18 an algebra problem requiring the symbolic addition of reciprocal fractions. This content would ordinarily be covered in the second or third semester of algebra; depending on the text ised.
A.

$$
\begin{array}{ll}
\frac{1}{x}+\frac{1}{y}= \\
\frac{2}{x+y} & \left\lvert\, \frac{1}{x y}\right. \\
-\left\lvert\, \frac{2}{x y}\right. & |\bar{x}| \frac{x+y}{x y}
\end{array}
$$

Item B is an algebra substitution item invoiving two quantities. This item content should be covered in the first year of algebra:
B. The number of feet that an object widi fail in \bar{t} seconds (negiecting air resistance) is given by the formuia $\bar{s} \equiv 1 / 2 \bar{g}^{2}$, where $s=t h e n u m b e r ~ o f ~$ feet, and $g=32$ (the acceieration due to gravity). Assuming there is no air resistance, how far wili a parachutist drop in a free fali of 10 seconds?

\| $\overline{\mathrm{x}}$ \|	1,600 feet	[-] 3,400 feet
1	2,440 feet	[_] None of these
$\underline{1}$	3,200 feet	

Finally, Item C is a geometry item comparing two similar triangles and requíring the calculation of the langth of one side.
C.

C . 24
$16 \quad 10$
$\begin{array}{llllll}A & 12 & B & \text { D } & 1 \overline{8} & \text { E }\end{array}$
In the figure above; \qquad ABC is similar to \qquad DEF. How many units are there in the length of side EF?

This item should be covered in the first semester of a geometry course.
The content of each of these items should be mastered by the third semester (A), first year (B), and second year (C) of college-preparatory mathematics, respectively. As shown on Table 29, of individuals with three full years of college-preparatory work, only 43 percent solved Item A. of those with one year, only 36 percent solved Item B, and of those with two years; only 31 percent solved Item C. We also see that after four full years of collegepreparatory mathematics, only 67 percent of seniors can solve the problem . requir $\bar{i} \overline{n g}$ symbolic addítion of reciprocais, oniy 88 percent can soive the simple first-year aigebra substitution item; and oniy $\overline{6} \overline{5}$ percent can soive the geometry problem.

Table 29

Mathematics A. hievement of Students with Varying Amounts of Mathematics Coursework

Achlevement Indtcator	Number of semesters of college-preparatory courses									Total	Percent increase semester
	0		2	3	4	5	6	1	8		
lteer i i i i i i i											
A. $\quad \frac{1}{x}+\frac{1}{y}=$	2.5	2,8	5.6	18.0	18.7	31.1	43.1	64,2	67.1	21.9	8.1
$E \frac{2}{\bar{x}+y}\left[\frac{1}{x y}\right.$											
$\left[\begin{array}{l} -1 \end{array} \frac{2}{x y} \quad\left\|\frac{x+y}{x}\right\| \frac{x+y}{x y}\right.$											
Bi The number of feet that an object witi falt In t seconds (neglecting air resiatance) Is given by the formula g a $1 / 2 \mathrm{gt}$, where $\delta=$ the number of feet; and $g=32$ (the acceleration dié to gravity). Assuming there is no arr resistance, how far will a parachutist drop lin ä frēe fall of 10 seconds?	19:0	25.2	35:8	51.2	55.6	66.7	69,2	88.7	8822	50,2	8.7
$\left[\begin{array} { l l l } { - 1 , 6 0 0 \text { feet } } \\ { - 2 ; 4 4 0 \text { feet } } \\ { 3 ; 2 0 0 \text { feet } } \end{array} \quad \left[\begin{array}{l} 3,400 \text { feet } \\ \\ 3, ~ N o n e ~ o f ~ t h e s e ~ \end{array}\right.\right.$											
c. $\begin{array}{cccccc} & 1 \overline{6} & \text { C } & & 24 & \text { F } \\ & & \text { i0 } & & 24 & \\ \text { A } & 12 & \bar{B} & \text { D } & 18 & \bar{B} \end{array}$	11.5	13.4	17.8	27.5	30.8	36.1	51.7	62.5	64.8	30.4	6.7
In the figure above; \qquad $A B C$ is similar to \qquad DEP. How many units are there in the length of side EP?											
Potal mathematics mean											
RIC											42

The bottom line of Table 29 exhibits the mean performance ōn ail of the CAP mathematics items for students with various amounts of coliegepreparatory māthematics. As can be seen; there is a steady increase in performance with increāed coursētaking. This is partly due to coverage of more advanced topics which simultaneously reinforces earlier content; but it is aiso due to the fact
 have already had grē̃̃er mastery of the more elementary content.

Graduation Requirementss

The new Cālfornià cours̄e requirements for high ṣchool graduation, to take éfeect in the 1986-87. school yēār, réfléct a new consensus on the quality of Cālifornia education. The data thus far presented in this report surely undergird that consensus. Ā C̄ālifornia has dropped from a position of leaderscip to below average, the national average has also fallen. Thus, the new educātional rēform in California immediately preceded a series of reports thāt recommend important changes in the national educational system:

A Nātion at Risk (National Commission on Excelience in Education; 1983) High School: A Report on Secondary Education in America (Boyer; 1983) Educäting Americans for the 21 st Century (National Science Board; 1983)

Additionally, the California State Board of Education has recommended that school districts adopt a set of requirements more stringent than the tegisiated onēs. Also, the Board of Regents in New York-which has more direct control over districts than the California board-has proposed revisions to graduation standards, both for the ordinary and the regents' diploma.

Although other states and other reports (eigo Adier; 1982) have addressed these issues, in this section we wili concentrate on two goais: (i) to compare the California efforts to other efforts; and (2) to assess how current Cailfornia seniors measure up to the standards in the reform legisiation and the state Board of Education's model:

In Table 30 we display some of the new graduation course requirements. All specify the last four years of high school as the time span for meeting the standards- The table first exhibits the new California Reform Act and the model graduation requirements (Raising Expectations, California State Board of Education, 1983). Next are the newly proposed graduation requirements of ordinary and regents' diplomas in New York. Then we record the requirements advanced in the A Nation at Risk report.

In the second half o \bar{f} the table, we contrast the state requirement $\bar{s} / \underline{r} \bar{e} c o m m e n-$ dations with those in Nation at Risk. We note that the requirements in the new legislation--whíle marking a large shift from no requirements āt all--āe the weakes \bar{t} of ait those exhibited. The legislation mandatē thrē years of English instead of four; two years of mathematics instead of three; two years of science instead of three; and no computer studies. Only in the area of social science (three years) doēs the legislation match the report's recomendations.

The State Board model compares more fāvorably. The only negative contrast is in science, where=in quantitative terms-the model matches the legisiationIn content, however, as we will sēe below; it is more stringent. Finally, the Caj́fornía state Board's model does address forégn language instruction, with two years recommended. Also, the recomendations in the model match the Nation at Risk report in specifying a semester of computer studies:

Table 30
Graduation Requirements in California and New York Compared to Those of A Nation at Risk

Subject area	Caltfornia		New York ${ }^{\text {c }}$		$\begin{array}{\|l\|} \hline \text { Nation } \\ \text { at RIsk } \\ \hline \end{array}$	Difference to A Nation at-Risk				
			Caitfornia	New York						
	$\begin{array}{\|l\|} \hline \text { Legis- } \\ \text { lation } \end{array}$	$\begin{gathered} \text { State Bd- } \\ \text { mode } \end{gathered}$			$\begin{gathered} \text { Non } \\ \text { regent- } \\ \hline \end{gathered}$	$\begin{array}{r} \operatorname{Re}-\bar{b} \\ \bar{g} \operatorname{ents} \bar{b} \end{array}$	$\begin{aligned} & \text { Legis- } \\ & \text { lation } \end{aligned}$	$\begin{gathered} \text { State Bd- } \\ \text { mode } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Nonre- } \\ \text { gents } \\ \hline \end{array}$	Regentss
English	3	4	4	4		4	-1			
Mathematics	2	3	2	3		3	-1	0	-1	0
Science	2	2	2	4	3	$=1$	-1	-1		
Social science	3	3	4	4	3	-	-1	-1	$+1$	
Foreign					3	0	0	$+1$	+1	
language	0	2	a	3	$0^{\text {d }}$	0	¢2	末	+3	
Computer studies	0	1/2	0	0	1/2	-1/2	0	- 112	+3	

${ }^{\text {a }}$ New York requires foreign language proficiency, confirmed by an examination. $\bar{b}_{\text {The New York Regents' diptoma requires passage of a Regents' examination; in }}$ addition to course requirements.
$C_{\text {These }}$ requírements are due for fināl approval in the spring of ig84.
The A Nation at Risk report "strongly recommends" two yeārs of foreign language for college-preparatory students.

The New York requirements-for a reguiar high school diplomá-are sighty more stringent than California's: one more year of English and the same amounts of mathematics and science. However, New York requirēs an additional year of social science and foreign language proficiency-validated by a test. New York's Regents' diploma is by far-the most stringent. It equals or surpasses the A Nation at Risk report in aí areas but computer stūdes, requiring four füll yeā̄s of science and three of foreign language.

Recently, data hāve become availabie--for the nation as a whole and selected states-on the proportion of 1982 high schooi graduates who have met the various graduation course requirements specifíed in A Nation at Risk. These data (How Well Do High School Graduates of Today Meet the Curriculum Stāndards of the National Comis̄̄ion on Excellence? 1983) dertve from analyses of the high school transcrfpts of 1982 seniors who are participating in the High School and Beyond fongitudinal study (National Center for Education Statistics, 1981). The data are presented in Table 31. The percents of 1982 high school graduates meeting each requirement are exhibited for California, New York; and the nation as a whole. Caiffornia is approximately comparable to the nation in most curricular areas except science, where only 17 percent of graduates meet the three-year requirement (compared to 52 percent nationwide) in contrast with New York, however; Caiffornia falls short in every area, but nost greatiy in English; social studfes; and science.

Table 31
Percent of 1982 High School Graduates Who Met Graduation Requirements Specified in A Nation at Risk

Requirement	Subject area	Coursework required	California	New York	Nation
Separately					
	English	4 years	48	72	59
	Social studies	3 years	67	92	65
	Mathematics	3 years	43	55	46
	Science	3 years	17	52	30
	Computer science	$1 / 2$ year	11	20	13
Simultaneously					
	A11 A11 but computer		1	9	3
	science		$\overline{5}$	29	13

SOURCE: These figures are based on an analysis of transcrixpts of i 982 high $\bar{s} c h o o l$ graduates. These transcrípts were obtained as a part of the ongoing High School and Beyond study of 1980 and 1982 graduates conductéd by the National Center for Education Statistics; $\dot{U} \cdot \bar{S}$. Department ō Education.

If we focus on the percentage of graduates who meet ail the \bar{A} Nation à Risk recommendations simultaneously, the results are even more striking: oniy 3 percent of the 1982 graduates in the U. S. met them and only 1 percent of Californīa graduatēs do soo. New York fares better with 9 percent. íf we dis̄regard the computer science requirement, the results may be more meaningful because this part of the curriculum was not as fully developed in the period from 1978 to 1982, when thēe graduates were studying. With this requirement removed, the figurē $\overline{\mathbf{a}} \overline{\mathrm{r}}$:

California	
New York	$\mathbf{5 9 \%}$
Nation	13%

This is sưrely unsatisfactory all around, but again New York has the highest ievel of academic coursetaking.

Because CAP's particular focus in the 1982-83 twelfth geade data coliéction was mathematícs and science; we now turn to a systematic content and quantity comparison of the California requirements with those of all the major reports (Table 32). First we note that the State Boardis recomendations specify that students take three fuli-year courses in mathematics; two of which must be algebra and geometry, thus extending minimai coliege-preparatory coursework to all students. We also note that the \bar{A} Nation ā Risk report has no course content specifications. The Carnegie Foundation-sponsored high Schooi (Boyer; 1983) report also omits specification of content in the formal requirements. The National Science Board's $218 t$ Century report is most detailed and stringent in this area. It epecifies three years of boch science and mathematícs--
including algebrā--for āll students; for the colilege-bound it would require both physics and chemistry within four years of science, and two years of algebra within four years of mathematics. It further specifies for all students a semester of computer science to be included in the science coursework. The report is notable for explicitly recomending that plane geometry not consume a full year's work:

How well do current California students satisfy these mathematics and science requirements (Table 32)? Ony 40 percent of 1982-83 California seniors satisfy the new requirements of two or more years of science (Table 27); 61 percent satisfy the parallel mathematics requirements (Table 28): If we apply the more stringent recommendations for graduation given by the California State Board, consíderably fewer of all 1982-83 California high school seniors would be quaí五手é to graduate:

Tāble 32
Percent of 1982-83 California High School Seniors Meeting Various Legislated and Proposed Mathematics and Science Graduation Requirements

Requírements	Science requirements	Mathematics requirements
```California, Legisiated and```	40	61
Proposed		
California State Board Model Requirements   National, Proposed	40	30
Requirements for all students		
A Nation at Risk	15	33
Carnegie - -	40	61
National Science Board	21	32
Requirements for collegebound students		
National Science Board	5	1

Placing California students in the context of the three major national reports presents a more varied picture:

- A Nation at Risk: Only 15 percent of $1982=83$ California high school seniors meet the science requirement, and 33 percent fulfíil. the mathematics requifrement.
- High School (Cārnegié). Forty pércent of 1982-83 Cālifornia high sechool
 māthematics requirements. Note thāt in these areās the report matches the new Cālifornia legī̄ātion.
- Educating Ainericans for the $21 \bar{s} t$ Century A CAP comparison of mathemātic̄ and s̄cence coursetāking in California with the National Science Boārd's suggested requirements showed that 21 percent of 1982-83 California hsigh school seniors meet the specified science requirement; and 32 percent fulfill the nithematics requirement.

It is important to observe that the California science requirements are substantially weaker than those recomended in two of the reports. The discrepanciē $\bar{s}$ are é ēpecially lāge when we compare science and mathematics coursework of 1982-83 California high school seniors to the requirements that are specified by the National Science Board: Only 5 percent of California seniors presently meet those science requirements and merely 1 percent meet the mathematics requirement: These proportions are far below those of California high school senior̄ who presently enter college: Although the State of California is mounting a great effort in increasing students' skills and knowledge in mathematics and science, the recent legislation might be only the first overdue step。

## Ways to Increase Student Achlevement

Once it has been decided what students are to learn, there are four ways to increase student achievement; the first three of which depend on increasing active learning time:

1. Inçease the time allocated to instruction.
2. Increase the proportion of allocated instructionā time actualiy devotē to instruction:
3. Increase the proportion of time devoted to insiruction that students spend actively iearning.
4. Reduce the time needed for iearning:

Presented below are some suggestions that should be addressed in policy discussions related to improving student achievement.
fncreasing the Amount of Time Available

The time allocated to instruction can be increased in three ways:

- Lengthening the school day and/or school year
- Rēallocating instructional time
- Increasing homework assignments

Lengthening the School Day and/or School Year
Since California students are offered considerably less schooling than students nationwide, lengthening the school day and the school year seems an appropriáse strātegy for increasing student achíevement By passing the new Educational Reform Act, the Legislature has encouraged this strategy As long ās procedures are implemented to ensure that the additional time is used to increase the amounts of time devoted to learning activities, this method may be extremely éffectivé. However, ās we noted above, even fuil implementatyon of these instructional time targets would result in total instructional time in California still short of the national average. perhaps additionai measures; especially those that reduce the time needed for learning; should be considered.

## Realiocating Instructional Time

Another way to increase allocated learning time is through reallocation. in élementary schoois; where individual teachers usually plan their own activities in self contained ciassrooms, reallocating instructional time implies either external control or consensus on priortty learning areas. All available evidence points to wide vardations in teacher priorities, even within a single elementary school. One possibility woutd be to increase the degree of departmentalization in elumentary schools, including iowering the grade levels for
which it is the mode of instrcctional organization. In secondary schools this could occur through eifination of electives or by reinstituting or expanding required courses. These actions result in reallocations from low to highpriority learning activities and subject areas.

Surely, the newly legislated high school graduation standards will accomplish a much needed reatlocation to priority academic subject arēās, ēspecially in schools which do not increase total instructional time: Agān, however, thé question must be raised about whether this is sufficient Even the new Cali= fornia requirements wili not match New York's new standards in English and social science. And merely meeting the new minimums will leāve a considerāble gap between the coursetaking of California high school students and those in New York, especłally in college-preparatory mathematics and sciencé. Additional action may be calléd for; particularly for college-bound sudents.

## Increasing Homework Assignments

Increasing homework assignments can be very effective in improving student achievement. One way to increase achīevement for ali students would be to extend the school day with a homework periō A Another might incorporate parental "sign-off" on homework assignments.

## Increasing the Proportion of Time Devoted to instruction

All the time nominally allocated for instructional activities is not àctūally used for instruction. Some of this loss of time from subjecét matēer instruction is a result of explicit policy-e.g., fire drilis ō schoolwide $\bar{a} \bar{s} \bar{s} e m b l i \bar{e} \bar{s}$ and transitions between one classroom activity and another. However; much lost time cān be avoided.

Time àcounting studiēs of élementary school classrooms have found varíations of 50 to 90 percent in the portion of total allocated time actually devoted to instiuction. Much of the loss results from poor management of student activitiēs: excēs̄iv̄ transition time between activities; pooriy handled recesses and breaks, pullout activities that are disruptive or that increase transition time, and subgroup and seatwork activities that take too long to establisho Also, in many clā̄̄̄rooms, $\bar{s} c h e d u l e \bar{s}$ are not met or activi= ties involving more than one teacher are poorly coordinated. All these problems result in losses of precious instructional time in elementary schools.

Secondary schools; because of the period structure and departmentalized organtzation; are less prone to losses of this type, but is̄̄ues do àris̄e about the length of period transitions and how related rules are enforced More effort devoted to identification of such problems and formulation of appropiate sciool poincies or in-service training efforts would be worthwhile: The following steps should be consíder rḗ :

- Review puilout programs to determine the difference between allocated instructionai time and time actualiy devoted to instruction:
- Increase teachers' çiassroom management skilis Teacher training institutions need to put more emphasis on developing such skilis.
- Evaluāté school schedules (e.g.; length of period; recess; iunch) to determine how much time scheduled for instruction ís iost.
- Other steps mlght focus on:

> Increasing at tendance and reducing tardiness through citear and consistent school policies
-- Reducing discipline problems by the use ō $\bar{f} \bar{f} \overline{r m} \overline{c o} \overline{d e} \bar{s}$ and ātérnative programs for the chronically disruptive

- Lightening tēachērs' administrative burdens


## Increasing the Proportion of Time Spent Actively Learning

The clearest message from the research on active learning time is that active learning is fostered by teacher-student contact and interchange. Unsupervised learning activities have uniformiy lower levels of active learming time. Sma11-group instruction and; to an even greater extent; tutorial instruction increase students' active learning time. This increase is most pronounced among students who have lcw achievement or motivation levels; such as educationaliy disadvantaged students.

The problem with routinely implementing changes based on this finding is one of resources. In many classrooms; lower student-teacher ratios could be achieved by reducing the size of supervised instructional groups, thereby increasing student-teacher contact time. In self-contained classrooms; without additional resources, there is a trade-off: When some students are tutored or taught in small groups; others are necessarily unsupervised. Thus; the critical issue-with resources being constant-is the trade-off between (a) large-group instruction accompanied by little unsupervised work; and (b) small-group/tutored instruction accompanied by considerable amounts of unsupervised, student-managed activity. The best evidence available is that reducing unsupervised time, even at the cost of increasing the total amount of largegroup instruction; ie appropriate, especially with students who have low levels of learning motivation and self-discipline and who are poorly prepared for academic work. It is recommended that school personnel:

- Review the grouping strategies that are routinely used in elementary schools and that āe éncouraged by tēxtbooks and workbooks̄. Minimizing subgrouping, and thereby unsūpervised seatuork, s’iould be primary goals:
- Evaluate the use of aides in classrooms; using qualified aides is an effective way to increase direct instruction for students.

Reducing the Amownt of Time Needed to Learn

Instruction can be made more effective in many ways, and effective instruc tion in turn will reduce the time needed for learning. Two ways deserve atten tion:

- Increasing the clarity and communicability of tāék-rēāted instructions provided by the tēacher or in text materiās
- Incrēāsing thē cāpabilitiēs of tēachérō to diagnose sudent $\bar{s}{ }^{\dagger}{ }^{\dagger}$ prior lēarning, to sequence the instructional task $\bar{s}$, and to keep the suadent woiking āt a sātisfying but chāllenging pace

Firs̄t, clēā explanations and comminication are the keys to decreasing the time students need to master or complete a task. This is especially true for students from low socioeconomic backgrounds. These students are especially affected by inappropriate and unclear explanations and verbal comundcations; whether they emanate from teachers; textbooks; or other instructional materials: The more capable students and those from higher socioeconomic backgrounds are more likely to be able, by themselves; to "fill in" or substitute for incomplete or insufficiently communcated instruction.

Second, teachers need to consider students abilities and priōr learning in arranging learning tasks for them and estimating the time needed for learning. The time needed for learning is unnecessarily increased if teachers incorrectiy assume specific prior learning for a task or if they aliocate time to tasks that students have already mastered.

Staff development efforts should ad̃ress these issues. Aiso, textbooks and workbooks should be more carefuly screened and pretested with particular types of students. Teachers should be taught to use diagnostic instruments more extensively for assessing studentsi prior iearning. At best, fmproving teachers' abilities to comunicate is difficult; because communication skills are iearnéd ovē iong pēriods ēariy in ōne's ífe. improved teacher recruit= ment and séléçion may be the only long-term solutions certain to bring about significant improvement in communication skills.
ín ad̄́tíon to modifyłng instructional materials and strategies, time needed fōr learning can be reduced by enhancing student study skills. If students can learn effective ways tc organize their study time, to draw upon i六rary and reference resources, and to request help when it is actually needed, the total time needed to master school learning tāsk is lēs̄ened. It is̄ recommended that school personnel:

- Evaluate textbooks and workbooks for clārity of instruction.
- Mākē grēatér us̄e of diānos̄̄̄ to ensure improved pacing and increased challenge of students.
- Focus instruction on building effective study skills and efficient and appropriate use of learning resources.


## Selected References

Adler, M. J. The Paidela Proposal. New York: Macmilian, 1982.
Anton, T. À. Length ōf Schōō Day and School Year-A Comparison of Cgiffornia $\frac{\text { with other States: Stockton, Calif.: Lincoln Unified School District, }}{1981 \text {, }}$ $\overline{1981}$.

B̄oom, $\overline{\mathrm{B}} . \mathrm{S}$. Human Characteristics and School Learning. New York: McGraw$\overline{\mathrm{H}} 111,197 \overline{6}$.

Boyer, E. L. High School: A Report on Secondary Education in AmericaNew York: Harper and Row, 1983.

Carroll, J. $\overline{\mathrm{B}}$. "A $^{\text {A }}$ Model for School Léarning," Teachers College Record, 1963, 64; 723-733.

Compensatory Education Study. Final report to the Congress. Washington; D.C.: National Institute of Education, 1978.

Denham, C., and Lieberman, A. Time to Learn: Washington, D.E.: U.S. Department of Education, National Institute of Education; 1980.

DeVault, M. L.; Harnischfeger; A.; and Wiley, D. E. Schooling and Learning Opportunity. Chicago: ML-GROUP for Policy Studies in Education; CEMREL; Inc., 1977.

Digest of Educational Statistics. Washington, D.C.: U.S. Department of Education, 1980.

Educating Americans for the 2lst Century- Washington; D.C.: National Science Board Commission on Precollege Education in Mathematics; Science and Technology, National Science Foundation; 1983.

Fisher, C. W., and Berliner, D. C. Perspectives on Instructional Time. New York: Longman, 1983.

Harnischfeger, A.; and Wiley, D. E. "Conceptual Issues in Models of School Learning." Studies of Educative Procisses, No. 10, Chicago: M-GROUP, CEMREL; 1977. Also in Journal of Curriculum Studies; 1978, Vol. 10, No. 3.

Harnischfeger, A:, and Witey; D. E- "Teaching-Learning Processes In Elementary School: A Synoptic View," Curriculum Inquiry; 1976; 6; 5-43; and in Readings in Educational Research: Educational Organization and Administration: Edited by D. A. Erickson- American Educational Research Assoctation. San Francisco: McCutchan; 1976; pp: 195-236.

Harnischfeger, $A:$, and Wiley, D. E. "Origins of Active Learning Tiwe." In Fisher; C. E., and Berliner; D. C. Perspectives on Instructionai Time: New York: Longman, 1983.

High School and-Beyond:- A National Longitudinal Study for the $1980^{\prime}$ s. Wàshington; D.C: $:$ National Cénter for Education Stātis̄ticss 1981.

Hinckley; R- H.; Beal; R: So; anc Breglic, V. J. "Student Economic and Educational Status and Receipt of Educational Services." Technical Report No. 3 from The Study of the Sustaining Effectē of Compensatory Education on Bāsic Skills: Santa Monica, Calif:: System Development Corporation, 1978.

How Well Do High School Graduates of Today Meet the Curriculum Standards of the National Commission on Excellence? NCES Bưlletin 83-223, Wāshing ton; D.C.: National Center for Education Statistics, 1983:

A Nation at Risk New York: National Comission on Excellence in Education, 1983 ${ }^{\circ}$

Ostendorf; L- Sumary of Offerings and Enrollments in Public Secondary Schools, 1972-73. Washington; D.C:: U.S: Government Printing Office; 1975:

Proposed Action Plan to Improve Elementary and Secondary Education Results in New York: Ałbany, N:Y.: New York Board of Regents; 1983:

Tyier, R. W. Basic Principies of Curricuium and Instruction Chicago: The University of Chicago Press; 1949.

 Researchēr, 3; 1974; 7-12.


[^0]:    
     * from the original document.

[^1]:    Total hours are calculatéd by dividing the product of the minutes per day and days per year by 60. Thīs process was carriéd out for sixth graders in California and the nation; using the figures in Table i- The resulting discrepancy is 93 hours.
    

[^2]:     tion became available, the decreases for California and the nation were 42 and 27 points, respectively.

[^3]:    末We note that in areas in which we expect a verbal aptitude component-biology and; perhaps; chemistry-that New York's performance superiority is still large if we adjust for verbal rather than mathematical aptitude.

[^4]:    *The response format for data reported in this section (1979-80 and 1980-81), both in CAP and High School and Beyond, may result in biases toward overestimation because of the reporting method (students reported the number of years of a subject; rather than which course was taken each semester of high school). This overestimation bias is obvious for the data reported in Table 18. For example; 74 percent of the 1982 seniors in caífornia claimed four years of English courses; whereas an anaiysis of the transcripts done as a part of the High School and Beyond fōilow-up study for a sample of those seniors showed that 48 percent completed four years of Enginsh (see Table 3i). However, because of similarity in reporting format for Caifornia and national data prior to 1983--inciuding the College Entrance Examination Board's data on college bound seniors=-CAP places great confī̄ēce in the reportē comparisons of California with New York and the nation.

[^5]:    *According to the $1982=83$ data, only three-quarters of the seniors took mathematics in the ninth grade; thus; íf thís were true in 1979-80 and 1981-82, these data would indicate closer parity of California and national data.

[^6]:    *Each October for the last three years; each California teacher has completed a Professional Assignment Information Form as part of the statewide information collection system known as the California Basic Educational Data System (CBEDS): On this form the teachers indicated the number of students in each course they teach:

[^7]:    *These data were collected by asking each twelfth grader to respond about taking specific courses in each semester of grades eight through twelve. We believe that this results in more accurate data than merely recording summary years and coursework.

[^8]:    SOURCE: CAP data; 1982-83

